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Abstract. In the theory of nonadiabatic superconductivity several features are governed by the electron-
phonon vertex correction which has a complex structure both in momentum and frequency. We derive a
physical interpretation of such nonadiabatic effects that permits to link them to specific material properties.
We show how the nonadiabatic vertex correction can be decomposed into two terms with different physical
origins. In particular, the first term describes the lattice polarization induced by the electrons and it is
essentially a single-electron process whereas the second term is governed by the particle-hole excitations
due to the exchange part of the phonon-mediated electron-electron interaction. We show that by weakening
the influence of the exchange interaction the vertex takes mostly positive values giving rise to an enhanced
effective coupling in the scattering with phonons. This weakening of the exchange interaction can be
obtained by lowering the density of the electrons, or by considering only long-ranged (small q) electron-
phonon couplings.

PACS. 63.20.Kr Phonon-electron and phonon-phonon interactions – 71.38.+i Polarons and electron-
phonon interactions – 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons,
resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.)

1 Introduction

In conventional metals, according to Migdal’s theorem [1],
the smallness of the parameter λω0/EF where λ is the
electron-phonon coupling, ω0 and EF are typical phonon
and electron energies respectively, permits to describe suc-
cessfully the electron-phonon coupled system by neglect-
ing the vertex corrections in the electronic self-energy. The
application of Migdal’s theorem to the superconducting
state has led to the Migdal-Eliashberg (ME) theory of su-
perconductivity, which accurately describes the properties
of conventional superconductors.

A different situation is encountered when we look at
materials showing high-Tc superconductivity. In fact, in
these materials, the common element is the smallness of
EF [2,3], so that Migdal’s theorem could be hardly sat-
isfied. For example, the fullerene compounds show vibra-
tional spectra ranging from few meV to about 0.2 eV,
while the electronic conduction band has a width of ap-
proximately 0.5 eV [4]. In this situation therefore the adi-
abatic parameter can be as large as ω0/EF ' 0.8. Also for
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the cuprates the situation points toward the breakdown of
Migdal’s theorem. For example, BSCCO compounds have
ω0/EF ' 0.26, a rather not negligible value [5]. For these
systems therefore the electronic and phononic dynamics
have comparable energy scales and there is not a priori
justification to neglect the vertex corrections [6,7].

Given this situation, one main question concerns the
role played in the phenomenon of high-Tc superconductiv-
ity by an electron-phonon coupling beyond the ME regime.
In investigating this subject, it is important to remind that
a theoretical framework which goes beyond Migdal’s limit
can lead to qualitatively different situations. For example,
strong electron-phonon couplings can lead to polaron and
eventually to bi-polaron formation also if ω0/EF � 1. This
regime is certainly beyond Migdal’s limit [8], however, for
several reasons, it unlikely gives rise to high temperature
superconductivity [9]. However, besides the ME and po-
laronic regimes, the electron-phonon system may display
also a regime beyond Migdal’s limit and, at the same time,
faraway from the crossover towards the polaron formation.
This situation is characterized by quasi-free charge carri-
ers (λ . 1) nonadiabatically coupled to the lattice so that
the vertex corrections are relevant. In practice, this nona-
diabatic regime can be formulated in a perturbative way
by treating λω0/EF as the expansion parameter of the the-
ory. At the zeroth order one recovers the ME limit while,
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Fig. 1. (a) Electron self-energy. The open circle represents the
set Γ of all irreducible vertex diagrams. (b) Expansion of Γ .
The first diagram represents the bare electron-phonon inter-
action g(q) while the second one is the first vertex correction
g(q)P (k+ q, k) which in the adiabatic limit gives a negligible
contribution to Σ.

due to its perturbative nature, the nonadiabatic theory
does not describe polaron (bi-polaron) formation1.

In a recent series of papers, we have adopted the per-
turbative approach by retaining the first corrections be-
yond Migdal’s limit for both the superconductive transi-
tion and the normal state [12,13]. We have shown that the
first vertex corrections already lead to a rich variety of be-
haviors ranging from the amplification of Tc [12] to the iso-
tope dependence of the effective charge carrier mass [14].
The latter finding actually provides a possible interpre-
tation of the experimental results given in reference [15].
Other interesting effects are given by the behavior of the
pressure coefficient of Tc [16] and the tunneling current
in the superconducting state [5]. Recently, we have shown
that the presence of isotropic disorder leads to a suppres-
sion of the critical temperature Tc for nonadiabatic su-
perconductors with s-wave symmetry of the gap [17]. The
latter result provides a possible interpretation for the ef-
fects observed in K3C60 [18] and in the electron doped
cuprate Nd2−xCexCuO4−δ [19], which are both s-wave
superconductors.

The variety of the effects cited above is a consequence
of the non-trivial behavior of the first vertex corrections
beyond Migdal’s limit. A typical vertex correction is given
by the last diagram in Figure 1b where the solid and
wiggled lines refer to electron and phonon propagators,
respectively (see also the following section). There is a

1 It is here important to stress that polaron formation is a
non-perturbative outcome of the electron-phonon system. For
the one-electron case of the Holstein model see for example
references [10,11]

rather vast literature on the behavior of this and other
nonadiabatic diagrams [20–28]. However, the main feature
of the vertex function is that it changes sign according to
the sizes of the momentum transfer q and the exchanged
Matsubara frequency ω. In particular, the vertex is posi-
tive for vF|q|/ω . 1 and negative for vF|q|/ω & 1, where
vF is the Fermi velocity [12,13]. Hence, depending on the
typical values of vF|q| and ω, the total electron-phonon
scattering amplitude can be larger or smaller than the
corresponding quantity without vertex correction. It is
basically from this property that the critical tempera-
ture Tc can be enhanced or lowered depending whether
vF|q|/ω0 . 1 or vF|q|/ω0 & 1, respectively [12,13].

The results obtained by considering van Hove singu-
larity effects [29] and by employing numerical calculations
with tight-binding electron dispersions [30] have confirmed
that such a behavior of the vertex function is rather ro-
bust. This situation suggests that the vertex diagram is
more than just a mathematical function, leading to the
possibility that its behavior can actually be interpreted in
terms of physical processes. In particular, it would be in-
teresting to understand which kind of physical processes of
the electron-phonon system makes the vertex positive for
vF|q|/ω < 1 and negative for vF|q|/ω > 1. In this paper
we try to clarify this point by investigating the physics
governing the behavior of the vertex function. Concern-
ing the theory of nonadiabatic superconductivity, the in-
terpretation of the nonadiabatic corrections in terms of
physical processes is important for several reasons. First,
it permits to identify the characteristics of the materials
which can lead to an enhancement of the critical tempera-
ture. Moreover, the physical understanding of the nonadi-
abatic effects can in principle overcome the limitations of
our perturbative theory by showing the way to construct a
phenomenological theory no longer bound to the diagram-
matic structure. Finally, our analysis permits also to re-
consider the electron-phonon coupled system and Migdal’s
theorem itself from a point of view different from the usual
ones, certainly contributing to the understanding of the
problem.

In the following part of this paper we first summarize
the behavior of the vertex function for different values of
the ratio ω0/EF and of the electron-density n. In Section 3
we focus on the one-electron case and the anti-adiabatic
limit ω0 → ∞. For these two cases the interpretation in
terms of physical mechanisms turns out to be particularly
straightforward. The last section is devoted to a general
discussion and to the conclusions.

2 Behavior of the vertex function

In this section we consider the electron-phonon vertex
correction and its behavior as a function of the adia-
batic parameter ω0/EF and the electron density n. In
the present analysis, we neglect the Coulomb interac-
tion between electrons. Let us consider an Hamiltonian
describing electrons with dispersion εk interacting with
phonons via a momentum dependent electron-phonon
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matrix element γq:

H =
∑
k,σ

εkc
†
kσckσ + ω0

∑
q

b†qbq

+
∑
k,q,σ

γqc
†
kσck−qσ

(
bq + b†−q

)
. (1)

Here, ω0 is the phonon frequency, assumed to be disper-

sionless for simplicity, and c†kσ (ckσ) is the creation (anni-
hilation) operator for an electron with wave number vector
k and spin σ. b†q (bq) is the creation (annihilation) opera-
tor for phonons with momentum q.

The thermal Green’s function for the electron G(k)
satisfies the usual Dyson equation:

G−1(k) = G−1
0 (k)−Σ(k), (2)

where we have used the four-momentum representation
k ≡ (k, iωk) ωk = (2nk + 1)πT is the fermionic Matsub-
ara frequency and T is the temperature. In equation (2),
G−1

0 (k) = iωk − εk and Σ(k) is the electron self-energy
due to the electron-phonon coupling:

Σ(k) =
∑
q

g2
qΓ (k + q, k)D(q)G(k + q), (3)

where we have used the short notation:∑
q

≡ −(T/N)
∑
ωq

∑
q

.

In the above equation, g2
q = 2γ2

q/ω0 and D−1(q) =

D−1
0 (iωq)−Π(q) is the phonon propagator, where Π(q) is

the corresponding self-energy and

D0(iωq) =
ω2

0

(iωq)2 − ω2
0

(4)

is the free propagator for phonons with Matsubara fre-
quencies ωq = 2nqπT . In the following, the variable
q ≡ (q, iωq) will always refer to phonons.

In terms of Feynmann diagrams the self-energy (3)
is shown in Figure 1a, where the solid and wiggled lines
are electronic and phononic propagators, respectively. In
Figure 1a the open circle is the proper vertex function
Γ (k + q, k), which is given by all diagrams which cannot
be separated into two different contributions by cutting a
single electron or phonon propagator line. In Figure 1b, we
show the expansion of the vertex function up to the first
correction: Γ (k+ q, k) = 1 +P (k+ q, k), where the vertex
correction P (k+ q, k) is given by the following expression:

P (k + q, k) =
∑
k′

g2
k−k′D(k − k′)G(k′ + q)G(k′). (5)

The aim of the present paper is to provide a physical in-
terpretation of the above vertex correction. In this way,
we should be able also to interpret in terms of physical
processes its complex behavior already pointed out in ref-
erences [7,12,13,29] and that we remind here briefly. First,
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Fig. 2. Vertex function P (k + q, k) as a function of the ex-
changed frequency and for different values of the dimensionless
momentum transfer Q = q/(2kF). The calculations have been
performed by using a flat density of states and a structureless
electron-phonon coupling.

Migdal’s theorem states that the order of magnitude of the
vertex correction (5) is P (k + q, k) ∼ λω0/(vF|q|), where
λ ' 〈g2

q〉/EF is the electron-phonon coupling and vF is
the Fermi velocity. Since in conventional metals λ < 1
and the momentum transfer |q| is of order of the Debye
momentum qD, ω0/(vFqD) ' ω0/EF � 1, where we have
set qD ' kF. The vertex correction P (k + q, k) can be
therefore safely neglected and Γ ' 1. This simple argu-
ment needs to be refined for systems showing a strong
energy dependence of the electronic density of states (see
for example Refs. [25,29]). However, whatever the details
of the band structure are, when ω0 is of the same order
of the electron bandwidth or when |q| � kF, the vertex
correction is no longer negligible. This situation can be
outlined by approximating the electron and phonon prop-
agators, G and D, with their corresponding free forms G0

and D0. In this way, the sum over Matsubara frequencies
in equation (5) can be performed exactly and the vertex
correction reduces to the following form:

P (k + q, k) =
ω0

2

∑
k′

g2
k−k′

εk′ − εk′+q + iωq

×

[
f(εk′) + n(−ω0)

εk′ + ω0 − iωk
−
f(εk′) + n(ω0)

εk′ − ω0 − iωk

−
f(εk′+q) + n(−ω0)

εk′+q + ω0 − i(ωk + ωq)
+

f(εk′+q) + n(ω0)

εk′+q − ω0 − i(ωk + ωq)

]
·

(6)

In the above equation, f and n are the fermionic and
bosonic distribution functions, respectively.

By employing various approximations like for exam-
ple the ones used in references [12,13] (constant electron
density of states, structureless electron-phonon coupling
and small momentum transfer) it is possible to perform
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Fig. 3. Representation of the particle-hole phase space. The
shaded area is the Fermi see, the open circle an hole and
the filled circle an electron. For zero exchanged frequencies,
particle-hole excitations can be obtained by connecting the
hole with the electron by the momentum transfer q such that
q · k′ = 0.

analytically the remaining summation in equation (6).
The result is shown in Figure 2, where we plot the ver-
tex correction P (k + q, k) at half filling as a function
of the exchanged frequency ωq and for different values
of the dimensionless momentum transfer Q = |q|/(2kF).
For simplicity, the external electron frequency ωk has
been set equal to zero. In the figure we notice that
P (k + q, k) can assume positive and negative values de-
pending on the ratio vF|q|/ωq: for vF|q|/ωq < 1 the ver-
tex is positive while for vF|q|/ωq > 1 the vertex be-
comes negative. This complex behavior is found also for
more realistic band models [30] and it is also reflected in
the different values the vertex assumes in the dynamic
and static limits. In fact, within the same approxima-
tion scheme used in the calculations reported in Fig-
ure 2, the static limit Ps = limq→0 limωq→0 P (k + q, k)
is negative: Ps = −ω0/(ω0 + EF), while the dynamic
one Pd = limωq→0 limq→0 P (k + q, k) is instead positive:
Pd = EF/(ω0 + EF) [7,12,13]. The vertex correction is
therefore non-analytic in ωq = 0, q = 0. This situation
holds true also when we consider strongly energy depen-
dence in the density of states. In fact, in the presence of a
Van Hove singularity, the expressions for Pd and Ps differ
from the above simple results but the non-analyticity in
ωq = 0, q = 0 remains [29].

However, this non-analyticity is removed when we con-
sider the case of only one electron coupled to the lattice.
In this situation the electron distribution functions in (6)
are strictly zero [31] and the vertex correction reduces to:

P (k + q, k) =
ω0

2

∑
k′

g2
k−k′

×

[
n(ω0)

(εk′ − ω0 − iωk)(εk′+q − ω0 − iωk − iωq)

+
1 + n(ω0)

(εk′ + ω0 − iωk)(εk′+q + ω0 − iωk − iωq)

]
, (7)

and it is straightforward to realize that the dynamic
and static limits of equation (7) are in fact equal. That

the frequency-momentum dependence is very sensitive of
the band-filling has already been demonstrated in refer-
ence [30] where it has been shown that, by moving toward
the low density limit, the momentum dependence is weak-
ened and the vertex becomes mainly positive (see Fig. 2
of Ref. [30]), in agreement with previous results obtained
in the infinite coordination lattice limit [32].

Summarizing the above discussion, P (k + q, k) has a
strong dependence on the exchanged frequency and mo-
mentum, and in particular is non-analytic in ωq = 0,
q = 0, only when the electron density is finite.Such a
behavior is typical of several response functions, and it re-
sults from the presence of particle-hole excitations. These
kinds of excitations are also present in the vertex function
(6) and they can be explicitly singled out by rearranging
equation (6) in the following way:

P (k + q, k) = Ppol(k + q, k) + Pex(k + q, k), (8)

where

Ppol(k + q, k) =
ω0

2

∑
k′

g2
k−k′

×

[
f(εk′) + n(ω0)

(εk′ − ω0 − iωk)[εk′+q − ω0 − i(ωk + ωq)]

−
1 + n(ω0)− f(εk′)

(εk′ + ω0 − iωk)[εk′+q + ω0 − i(ωk + ωq)]

]
, (9)

and

Pex(k + q, k) = −
∑
k′

g2
k−k′

ω2
0

(iωk + iωq − εk′+q)2 − ω2
0

×
f(εk′+q)− f(εk′)

εk′+q − εk′ − iωq
· (10)

The vertex function Ppol, equation (9), has equal dynamic
and static limits and, in the one electron case, it reduces
to equation (7). The second function, Pex, has instead a
non-zero static limit and vanishes in the dynamic limit.
Moreover, contrary to Ppol, Pex vanishes in the one elec-
tron limit. It is therefore Pex that is responsible for the
different values of the dynamic and static limits of the
vertex function (6) when the electron density is finite. As
it is clear from the expression in equation (10), the behav-
ior of Pex is governed by particle-hole excitations since the
factor

f(εk′+q)− f(εk′)

εk′+q − εk′ − iωq
=
f(εk′+q)[1− f(εk′)]

εk′+q − εk′ − iωq

+
f(εk′)[1− f(εk′+q)]

εk′ − εk′+q + iωq
, (11)

describes particle-hole pairs creation. The reason of hav-
ing different values of the static and dynamic limits is con-
tained just in equation (11). In fact, the particle-hole ex-
citation processes depend strongly on the available phase
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space as it is shown in Figure 3 where we show schemat-
ically the process given by the last term of equation (11)
for an isotropic Fermi sphere. For zero exchanged fre-
quency, ωq = 0, particle-hole excitations are present when
εk′+q = εk′ , and this condition is obtained by placing
the hole and the electron close to the Fermi surface. On
the other hand, when the exchanged frequency is nonzero,
the particle-hole excitations vanishes linearly with the mo-
mentum transfer q when q→ 0.

From the above discussion, we have seen that the two
contributions Ppol and Pex to the vertex function P have
different behaviors. In the following, we shall show that
these different behaviors are due to the fact that Ppol and
Pex actually have different physical interpretations, and
the problem of finding the physical origin of the vertex P
can be solved by looking separately at Ppol and Pex.

3 Limiting cases

In this section we investigate the vertex function by con-
sidering its two components, Ppol and Pex, separately. This
can be done by considering particular limiting cases. For
example, in the limit of one electron in the system, the
particle-hole contributions vanish so that Pex = 0 and the
vertex function coincides with Ppol in the form of equa-
tion (7). On the other hand, as it is clear from equa-
tion (9), when we employ ω0 = ∞ limit (non-retarded
phonon propagator) for a finite electron density, the po-
larization part Ppol vanishes and the vertex is determined
entirely by limω0→∞ Pex.

The physical interpretation of the one electron and
ω0 = ∞ limits becomes straightforward if we introduce
an external potential Uext which couples to the electron
density. In fact, when the coupling to the lattice is absent,
this potential modifies the electron distribution in a way
which depends on the explicit form of Uext. However, when
the electrons interact with the phonons, the response of
the electrons to the external potential changes because of
the electron-phonon coupling. This situation can be de-
scribed in terms of an effective potential Ueff . Actually,
the vertex function is part of the effective potential, so
that we can interpret the vertex correction in terms of the
physically more intuitive Ueff .

3.1 One-electron case: Ppol

First, we consider the case of only one electron in the sys-
tem. In this situation, the particle-hole contributions of
the vertex function vanish and the second term of equa-
tion (8), Pex, is zero. Therefore the vertex is given by the
one electron limit of Ppol, equation (9), which at zero tem-
perature reduces to:

Ppol(k + q, k) =

ω0

2

∑
k′

g2
k−k′

(εk′ + ω0 − iωk)(εk′+q + ω0 − iωk − iωq)
· (12)

As already pointed out before, the dynamic and static
limits of Ppol coincide and, by using a constant density of
states N(0) and a structureless electron-phonon interac-
tion g0 (see Refs. [12,13]), the q = 0, ωq = 0 limit of (12)
becomes:

lim
ωq→0,q→0

Ppol(k + q, k) = λ
E/2

ω0 +E
, (13)

where we have neglected the external electron frequency
ωk. In the above equation, E is the electronic bandwidth
and λ = g2

0N(0) is the electron-phonon coupling constant.
Our aim is to find the physical origin of equation (12)

and to explain the reason why the limit in equation (13) is
positive and, consequently, why the total effective nonadi-
abatic coupling is enhanced. To this end, we approach the
problem by reasoning in terms of the electron response to
an external potential Uext

2.
Let us for the moment neglect the electron-phonon in-

teraction. For simplicity, we assume also that, in the ab-
sence of the external perturbation Uext, the electron wave-
function for the state k and energy εk is well described by
a simple plane-wave ψ0

k(r) = exp(ik · r)/
√
V , where V is

the volume.
A nonzero external perturbation Uext modifies the elec-

tronic wavefunction which, to the first order of the time-
independent perturbation theory, is given by:

ψk(r) = ψ0
k(r) +

∑
q

Uext(q)

εk − εk+q
ψ0

k+q(r). (14)

where Uext(q) = 〈ψ0
k+q|Uext(r)|ψ0

k〉. If we consider Uext(r)
to be given by a potential well of the form:

Uext(r) =

{
−U0 r ≤ R

0 r > R
(15)

then the density of probability |ψk(r)|2 of finding an elec-
tron with k = 0 at position r is enhanced inside the po-
tential well and lowered outside the region r ≤ R. This is
shown in Figure 4 where we plot V |ψk(r)|2 for k = 0 by a
dashed line. In the lower panel of the same figure we also
plot the potential well Uext(r) of equation (15) (dashed
line).

Let us now study how the above picture is modified
when the electron is weakly coupled to the lattice vi-
brations. Intuitively, we expect that the lattice is more
polarized where the probability of finding the electron is
larger, that is inside the potential well (for k small). The
lattice polarization, in turns, provides an attractive po-
tential which is added to the external one. We can con-
sider this situation in a formal way by replacing the simple
plane waves ψ0

k(r) in equation (14) and in the definition
of Uext(q) by wavefunctions modified by the coupling to

2 Since in the one-electron case the static and dynamic lim-
its of the vertex function are equal, we can consider a static
potential (ωq = 0) and no ambiguity is found in the q = 0
limit.
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Fig. 4. Upper panel: density of probability of one electron
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phonon interaction. The potentials are plotted in units of U0

and the densities of probability are properly normalized. In or-
der to make clear the effect of the electron-phonon coupling
we have used suitable values of the parameters entering in
equations (17, 18).

the lattice vibrations [31]:

φ0
k(r) = ψ0

k(r) +

√
ω0

2

∑
k′

gk−k′

εk − εk′ − ω0
b†k′−kψ

0
k′(r).

(16)

In this way, the new electron wavefunction in the presence
of the external potential reduces to

φk(r) = φ0
k(r) +

∑
q

Ueff(k + q,k)

ε(k)− ε(k + q)
φ0

k+q(r), (17)

where ε(k) is the electron dispersion modified by the
electron-phonon coupling and Ueff(k+q,k) is the effective
external potential which results from the lattice
polarization:

Ueff(k + q,k) = 〈φ0
k+q|Uext(r)|φ0

k〉 = Uext(q)

×

[
1 +

ω0

2

∑
k′

g2
k−k′

(εk′ − εk + ω0)(εk′+q − εk+q + ω0)

]
.

(18)

The second term in square brackets is just the electron-
phonon vertex correction (12) calculated for iωk = εk and
iωk+iωq = εk+q, i.e., at the poles of the incoming and out-
coming electron lines of the vertex diagram of Figure 1b.
The vertex correction for the one-electron case is there-
fore part of the effective potential arising from the lattice
polarization. From the above discussion, as long as the
electron is in phase with the lattice displacement, the po-
larization should in general amplify the potential seen by
the electron. This is confirmed by the numerical results

reported in Figure 4, where in the lower panel we plot the
Fourier transform of the effective potential (18) for k = 0
(solid line). Moreover, the enhanced potential leads to an
enhanced probability of finding the electron in the vicin-
ity of the potential well (solid line in the upper panel of
Fig. 18).

At this point it is straightforward to understand why
the q → 0 limit of the vertex function for one electron is
positive (see Eq. (13)). In fact, for k = 0, limq→0 Ppol =
〈Ppol(r)〉, where 〈· · · 〉 means the average over the volume
of the system, and from equation (18):

〈Ppol(r)〉 =
〈Ueff(r)〉 − 〈Uext(r)〉

〈Uext(r)〉
> 0. (19)

Of course the treatment of the problem followed in this
section does not consider the effect of the other electrons
when the electron density n is finite. This effect is par-
tially contained in the general expression of Ppol given by
equation (7) which in fact can be interpreted along the
same lines followed in this section by taking into account
the fermionic statistics of the electrons. However, Ppol is
basically a single electron process and it belongs to the
class of processes for which the same electron can gener-
ate a phonon at a certain time t and then absorb it at a
later time t′. Such kind of processes are consequence of
the retarded phonon propagation and they in fact vanish
in the limit ω0 → ∞ (see Eq. (9)). On the other hand,
for many electrons systems, different kinds of processes
are those for which the electrons interact by exchanging
virtual phonons. These are many-electrons processes not
contained in Ppol but given by Pex, which is in fact deter-
mined by particle-hole excitations.

In the next section we provide an interpretation for
the physical origin of Pex. As anticipated before, we will
introduce an external potential and we will consider the
resulting effective potential by employing the ω0 → ∞
limit for which Ppol vanishes and the interpretation of Pex

is particularly simple.

3.2 Anti-adiabatic limit: Pex

Let us consider the electron-phonon coupled system in the
limit ω0 → ∞. In order to have non-trivial results, we
perform this limit in such a way that the quantity g2

q =

2γ2
q/ω0 remains finite. From equation (9), limω0→∞ Ppol =

0 and the vertex function reduces to:

lim
ω0→∞

P (k + q, k) = lim
ω0→∞

Pex(k + q, k)

=
∑
k′

g2
k−k′

f(εk′)− f(εk′+q)

εk′ − εk′+q + iωq
· (20)

As we have seen before, this term has different dynamic
and static limits. In particular, we have:

lim
ωq→0,q→0

Pex(k + q, k) = 0, (21)

lim
q→0,ωq→0

Pex(k + q, k) =
∑
k′

g2
k−k′

df(εk′)

dεk′
' −λ,

(22)
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where the last equality holds true at low temperatures
and λ is the electron-phonon coupling constant. Although
we can interpret the zero value of the dynamic limit (21)
as due to the vanishing contribution of the hole-particle
excitation contribution (see Eq. (11)), the reason why the
static limit (22) is negative remains unclear. In this section
we try to clarify this point by considering the problem of
the electron response to an external potential Uext which
couples to the electron density.

The anti-adiabatic limit ω0 → ∞ transforms the
electron-phonon interaction into an effective non-retarded
electron-electron interaction. The Hamiltonian can be ob-
tained by integrating out the phononic degrees of freedom
[33] and then performing the ω0 →∞ limit. The result is:

H=
∑
k,σ

εkc
†
kσckσ+

∑
q

Uext(q)n(q)−
1

2

∑
q

g2
qn(q)n(−q),

(23)

where n(q) is the electron density operator:

n(q) =
∑
kσ

c†k+qσckσ. (24)

Note that for the Holstein model gq = g0, so that its
anti-adiabatic limit is equivalent to the attractive Hub-
bard Hamiltonian with U = −g2

0. Now, let us consider
the response of the system to the external potential Uext.
Since the electrons are interacting through g2

q, the re-
sponse depends in general on the whole electron configura-
tion. For our purposes, we shall deal with this problem by
performing the Hartree-Fock approximation in the four-
operator term in equation (23). This approach is equiv-
alent to consider antisymmetrized states of N indepen-
dent one-electron wavefunctions and leads to the random
phase approximation with exchange corrections for the ef-
fective potential seen by the electrons. When we apply
the Hartree-Fock approximation, the interaction term in
equation (23) becomes:

1

2

∑
q

g2
qn(q)n(−q)→ +

∑
q

g2
q〈n(−q)〉n(q)

−
∑
q

∑
k k′ σ

g2
q〈c
†
k+qσck′σ〉c

†
k′−qσckσ, (25)

and, after a manipulation of the momenta indexes, the
Hamiltonian (23) can be rewritten as follows:

H =
∑
k,σ

εkc
†
kσckσ +

∑
q

Uext(q)n(q)

+
∑
kqσ

VHF(k + q,k)c†k+qσckσ, (26)

where VHF is the Hartee-Fock potential in the presence of
the external perturbation:

VHF(k + q,k) = −g2
q〈n(−q)〉 +

∑
k′

g2
k−k′〈c

†
k′σck′+qσ〉.

(27)

The first term in the right hand side is the Hartree contri-
bution which results from the potential generated by the
electrons regardless the specific electronic configuration.
The last term of equation (27) is instead the Fock con-
tribution which treats the electrons as being dressed by
their exchange holes. Below we show that the vertex func-
tion Pex originates from the Fock contribution of equa-
tion (27), i.e., from the exchange term of the phonon me-
diated electron-electron interaction.

The effective potential given by the redistribution of
the electrons is readily obtained by the linear response
theory. In fact, for small values of Uext, the expectation
values appearing in equation (27) can be rewritten as:

〈n(−q)〉 = 〈n(−q)〉0 + δ〈n(−q)〉 (28)

〈c†k′σck′+qσ〉 = 〈c†k′σck′+qσ〉0 + δ〈c†k′σck′+qσ〉 (29)

where the first and the last terms in the right hand sides
are the expectation values in the absence and in the pres-
ence of the external potential, respectively. From equa-
tions (27–29), VHF can be rewritten as V 0

HF + δVHF and
the Hamiltonian (26) becomes:

H = H0
HF +

∑
q kσ

Ueff(k + q,k)c†k+qσckσ, (30)

where H0
HF is the Hamiltonian in the Hartree-Fock ap-

proximation for Uext = 0 and

Ueff(k + q,k) = Uext(q) + δVHF(k + q,k). (31)

The above expression is a self-consistent equation because
δVHF depends implicitly on Ueff . We can repeat the calcu-
lations by assuming a time-dependent external potential.
In this case, by employing the linear response theory ap-
plied to the Hamiltonian (30), the self-consistent equation
for Ueff is given by:

Ueff(k + q,k, iωq) = Uext(q, iωq)

− 2g2
q

∑
k′

f(εk′)− f(εk′+q)

εk′ − εk′+q + iωq
Ueff(k′ + q,k′, iωq)

+
∑
k′

g2
k−k′

f(εk′)− f(εk′+q)

εk′ − εk′+q + iωq
Ueff(k′ + q,k′, iωq), (32)

where ωq is the Matsubara frequency provided by
the time-dependence of the external potential and εk
is now the electron dispersion in the Hartree-Fock
approximation.

Equation (32) is just the random phase approximation
with exchange corrections applied to the electron-phonon
coupled system in the anti-adiabatic limit ω0 → ∞. The
second term of equation (32) represents the electron re-
sponse to Uext governed by the Hartree potential while the
last term is the correction due to the exchange potential.
To the first order in Uext, the last term of equation (32)
can be rewritten as PexUext where Pex is the vertex cor-
rection in the antiadiabatic limit (20). Therefore Pex is
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Fig. 5. Diagrammatic representation of the self-consistent
equation (32). The dashed circles represent the effective po-
tential Ueff . The second diagram comes from the Hartree in-
teraction while the last one from the Fock term. The wiggled
lines represent the phonon mediated electron-electron interac-
tion in the antiadiabatic limit.

just the Fock contribution to the electronic response to
the external potential when ω0 →∞.

We show in Figure 5 the diagrammatic representation
of the self-consistent equation (32). The Hartree term is
represented by the set of bubble diagrams while the Fock
contribution is given by the ladder contribution which, to
the first order in Uext, is the vertex diagram.

At this point we can explain the behavior of the ver-
tex function in the antiadiabatic limit already outlined
in equations (21, 22). In fact, the negative static limit of
equation (22) can be understood by the following reason-
ing. If we consider a static potential, then we must set
ωq = 0 in equation (32). For simplicity let us also con-
sider an attractive potential like for example the one in
equation (15), i.e., the potential well model. If we neglect
the Fock contribution, the electrons will tend to form a
cloud around the potential well and an added electron will
experience an effective potential given by the bare poten-
tial well Uext plus the electron cloud. The resulting effec-
tive potential is given by the first two terms of the right
hand side of equation (32). Since the phonon mediated
el-el interaction is attractive, such an effective potential is
stronger than the bare one. However, when we consider the
effect of Pauli principle, the electron becomes dressed by
the exchange hole which repels the other electrons. There-
fore the net effect of the Pauli principle is to weaken the
electron-electron attraction and this weakening is reflected
in the negative sign of the exchange term. In conclusion,
in the anti-adiabatic limit, the negative sign of the vertex
function for ωq = 0, equation (22), is exclusively due to
the exchange effect which weakens the phonon mediated
electron-electron interaction.

This picture is still valid when we take into account
the retardation of the phonon-mediated electron-electron

interaction (ω0 <∞). In fact the last term of equation (9)
can be interpreted as the Fock-like contribution for a re-
tarded potential.

4 Discussion and conclusions

From the above analysis, we have seen that the vertex
function results from electron-phonon processes of differ-
ent origins. In fact, we have shown that the behavior of
the vertex P is due to the competition between two dif-
ferent contributions: Ppol and Pex. The first one is the
result of the lattice polarization as induced by the elec-
tron motion. At low frequencies, this term leads to a pos-
itive contribution to the electron-phonon interaction and
tends to enhance the coupling. Moreover, Ppol is basi-
cally a single electron process. The second term, Pex, is
instead due to the exchange effect of the phonon mediated
electron-electron interaction. Due to its nature, Pex tends
to reduce the electron-phonon effective coupling. More-
over, since the exchange term gives rise to particle-hole
excitations, Pex is sensitive to the momentum transfer q
and the exchanged frequency ωq of the electron-phonon
scattering process and it gives rise to the different values
of the dynamic and static limits of the vertex function. In
particular, for vF|q| � ωq the vertex function is mainly
a lattice polarization process while for vF|q| � ωq the
polarization is reduced by the exchange hole.

Given the results presented in this work, it is possi-
ble to identify situations in which the vertex correction
can give rise to an enhancement of the effective electron-
phonon coupling. In fact, an enhancement can be au-
tomatically obtained if the exchange effects become less
important. This can be achieved, for example, when the
charge carrier density is low, so that the average distance
between electrons can exceed the size of the exchange hole
leading to a negligible Pex. In this way we can understand
the results reported in references [30,32] where it is shown
that, by reducing the charge carrier density, the vertex
correction enhances the effective coupling.

A more interesting situation in favour of an enhance-
ment of the vertex corrected electron-phonon coupling is
obtained by considering only small q scattering in the
electron-phonon interaction. In fact, for a small enough
momentum transfer, say vF|q| � ω0, the particle-hole
contributions (11) have little weight and the negative ex-
change term Pex becomes negligible. This result therefore
clarifies on physical grounds why the effective nonadia-
batic electron-phonon interaction and so the supercon-
ducting critical temperature Tc is enhanced by the vertex
corrections when the electron-phonon interaction is only
via small momentum transfer [12,13].

At this point, it is useful to briefly summarize the role
played by strong electronic correlations on the size of the
electron-phonon momentum transfer. As it is well know,
in ordinary superconductors the phase space available for
large momentum transfer phonons is much larger than for
small momentum transfer phonons because the correla-
tion is weak and the screening important. In this situa-
tion therefore the main contribution comes from the static
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limit Ps of the vertex corrections. For ω0/EF � 1 Ps is
negligible and Migdal’s theorem holds true. However, in
materials where the electronic correlation is strong, the
situation may differ substantially as reported by several
authors in recent years [34–39]. The physical picture com-
mon to the different theoretical approaches is that, in a
strongly correlated system, the charge carriers are sur-
rounded by giant correlation holes that may extend over
many lattice units [39]. For example, in the U →∞ limit
of the Hubbard model, the correlation hole has an exten-
sion of roughly a/δ, where a is the lattice constant and
δ is the hole concentration [39]. In this case, the system
can respond only to charge fluctuations of characteristic
length larger than a/δ. In this way, the maximum electron-
phonon momentum transfer is of order δ/a, which can be
much less than the unity for low hole concentrations. Such
a small momentum transfer can suppress the exchange
contribution (10) and single out only the positive polar-
ization part of the vertex function (Eq. (9)). Finally, it
should be remarked that an electron-phonon interaction
peaked at small momentum transfer is also a natural con-
sequence of weak screening effects when the charge carrier
density is small [40].
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7. L. Pietronero, S. Strässler, Europhys. Lett. 18, 627 (1992).
8. A.S. Alexandrov, Physica C 158, 337 (1989).
9. B.K. Chakraverty, J. Ranninger, D. Feinberg, Phys. Rev.

Lett. 81, 433 (1998).
10. S. Ciuchi, F. de Pasquale, S. Fratini, D. Feinberg, Phys.

Rev. B 56, 4494 (1997).
11. M. Capone, S. Ciuchi, C. Grimaldi, Europhys. Lett. 42,

523 (1998).
12. C. Grimaldi, L. Pietronero, S. Strässler, Phys. Rev. Lett.

75, 1158 (1995).
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